

SECURITY CLASSIFICATION OF THNIS f IAOU

REPORT DOCUMENTAT1ON PAGE
Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

unclassified
2a, SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION IAVAILABILITY OF REPORT

unlimited
2b. DECLASSIFICATION I DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONTORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATIONThe Regents of the Unversty (Nf eaplicable) SAA
of CalfornaSPAWAR

6c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)
Berkeley, California 94720 Space and Naval Warfare Systems CommandWashington, DC 20363-5100

Ba. NAME OF FUNDING ISPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBERORGANIZATION I (if applicable)

DA RPA I
Sc. ADDRESS (City, State, nd ZIP Code) 10 SOURCE OF FUNDING NUMBERS

1400 Wilson Blvd. PROGRAM IPROJECT ITASK WORK UNIT
Arlington, VA 22209 ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)

* A Trace-Driven Simulation Study of Dynaric Load Balancing
12. PERSONAL AUTHOR(S)
* Songnian Zhou
13a. TYPE OF REPORT 113b. TIME COVERED 14 DATE OF REPORT (Year, Month, Day) S PAGE COUNT
technical FROM TO * January, 1987I* 28

16 SUPPLEMENTARY NOTATION

17. COSATI CODES 1S. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP

'9. ABSTRACT (Continue on reverse if necessary and identify by block number)

Enclosed in paper.

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
*UNCLASSIFIEDIUNLIMITED (3 SAME AS RPT. O DTIC USERS unclassified

22.. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 22c. OFFICE SYMBOL

DD FORM 1473, s4 MAR S3 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

A Trace-Driven Simulation Study of' Dynamic Load
Balancing

Songnian Zhou

Computer Systems Research Group
Computer Science Division, EECS

University of California, Berkeley t

ABSTRACT

A trace-driven simulation study of dynamic load balancing in homogeneous
distributed systems supporting broadcasting is presented. We use inforuntion
about job CPU and 1/0 demands collected from a production system as input to
a simulation model that includes a representative CPU scheduling policy and con-
siders the message exchange and job transfer costs explicitly. Seven load balanc-
ing algorithms are simulated and their performances compared. We find that
load balancing is capable of significantly reducing the mean and standard devis-
tion of job response times, especially under heavy system load, and for jobs with

high resource demands. The performances of all hosts, even those originally with
light loads, are generally improved by load balancing. The reduction of the mean
response time increases with the number of hosts, but levels off at around 30
hosts. Algorithms based on periodic or non-periodic load information exchange
provide similar performance, and, among the periodic policies, the algorithms that
use a distinguished agent to collect and distribute load information cut down the
overhead and scale better. They are also the most appropriate algorithms for
adaptive load balancing, which has the potential of offering near-optimal perfor-
mance under a wide spectrum of system confgurations and load conditions. Sys-
tern instability in the form of host overloading is possible when the load informa-
tion is not up-to-date and the system is under heavy load; however, this undesir- qu
able phenomenon can be alleviated by simple measures. Load balancing is still
very effective even when up to half of the eligible jobs have to be executed
locally. The trace-drive. simulation approach to the study of load balancing is
found to be efficient and effective, and is recommended for use before implemen-

tation efforts.
or

t Tid work wa partiafl sponred by the ODes. Advucd Reawtch Projects Auq (DoD) AM& Orde No.
4071, monitored by $pa sad Naval Waif e Systeam Coamad ader Cstvact No NeMSo.C40s, sad by
the Nationl Sciece roundatiou udev put 1b -N TL The vi *ad eobi ontabith ne damamt are those ar th author and Iould not be Interproted as roproesatlag *s pom, ekbteprw mud or

ylled, of tho D ems Remeu Proec Agne, or of the US Goeeramost. v.biity Codes

•...il -d /or

_K:01

-2-

1. Introduction

Distributed computer systems are becoming increasingly available because of the drop in

hardware costs and advances in computer networking technologies. An important advantage of

distributed systems is the potential of resource sharing to provide the users with a rich collection

of resources that are usually unavailable or highly contended for in stand-alone systems. Exam-

ples of sharable resources are fles, computing power, and printers. It is frequently observed that,

in a computing environment with a number of hosts connected by networks, there is a high proba-

bility that some of the hosts are heavily loaded, while others are almost idle. Even if the hosts

are evenly loaded over long periods, such as half an hour or more, the instantaneous loads are

likely to be fluctuating constantly. t This suggests that performance gains may be achieved by

transferring jobs from the currently heavily loaded hosts to the lightly loaded ones. This form of

computing power sharing, with the purpose of improving the performance of a distributed system

by redistributing the workload among the available hosts, is commonly called load balancing, or

load sharing. t

The problem of load balancing has been studied using a number of different approaches over

the years. The early works mainly concentrated on static load balancing [3, 18, 19, 221. In those

studies, job transfer decisions are made deterministically or probabilistically without taking into

consideration the current state of the system. The problem of program module assignment has

also been studied in a number of forms, with the basic assumption that the program concerned

can be partitioned into a number of modules with known resource consumptions and inter-module

communication costs. Load balancing is formulated as a mathematical programming or network

flow problem, and solved by optimizing some performance index such as the average response

time or the resource utilizations.

Static load balancing is simple and effective when the workload can be sufficiently well

characterized beforehand, but it fails to adjust to the fluctuations in system load. In contrast,

dynamic load balancing* attempts to balance the system load dynamically as jobs arrive.

Because of its generality and ability to respond to temporary system unbalances, dynamic load

balancing has received increasing attention from the research community (7, 8, 9, 12, 16, 17, 211.

Livny and Melman [17 showed, using simple queuing network models and simulation, that

dynamic load balancing can greatly improve average job response time. They also proposed a

number of implementable algorithms for load balancing. Eager et al. [91 carried the work further

by systematically studying a number of dynamic load balancing algorithms with different levels of

complexity. Their results conirmed the great potential of load balancing. They also claimed that

relatively simple algorithms can provide substantial performance improvements, while more com-

plicated algorithms are not likely to offer much further improvement. Wang and Morris 1211

t Such obeervations, of course, an dependent on the system and the applications being run. For instance, in a
main-frarm batch data proceming enviroanwat, the loads might be eves over loag periods of time. I cmtrat,
however, in a workstation-rich eavironmmt, which is becoming more and more popular, the probabiity of a m.-
jority of the stations being idle or ahost idle is very high P.

S The term load balancing has sometime been used to imply the objeetv o equalising the loads of the hots
whereas load sharing simpb, mans a redieibutlon of the worklod. We wil we the term Ild balaacing in the
rest et this paper, but without the stronger connotation.
* Som authors used the ternm sdaptie load We"Ag and dynamie load balacing intrehagably. We ded-
ad, however, to reserve the forrme for a particular form of load balancing to be described later in this paper.

-3-

conducted a comprehensive study and pointed out that the choice of a load balancing agorithm is

a crucial design decision. They also proposed a performance metric called the Q-factor, and used

it to evaluate the quality of the algorithms. Leland and Ott [16 performed an extensive study of

process behavior in the VAX/UNIX environment and evaluated the usefulness of initial process

assignment and process migration as forms of load balancing. A number of other researchers have

also considered process migration in their load balancing algorithms 11, 41. To limit the scope of

our study to a manageable level, however, we will not consider process migration in this paper.

Process migration is also much more difficult to implement, and involves higher costs in most sys-

tems.

Although different authors make very different assumptions about system structures and
overhead costs, the main tools of study in dynamic load balancing have been queuing network

models and simulation with probabilistic assumptions about job arrivals and resource demands.

Unfortunately, a reasonably accurate analytic model for a real-world system with a load balancing

scheme of modest complexity can be very difficult to construct. Solving the models is even

harder. Consequently, many researchers are forced to make simplifying assumptions that are
often unrealistic, rendering the results of the studies subject to suspicion. For example, in order

to make the model tractable, the job interarrival time and the job execution time are often

assumed to be exponentially distributed. The utilizations of the hosts are sometimes assumed to

be the same, and the effects of the system scale on load balancing performance are often ignored.

For similar reasons, the costs of exchanging load information and other types of costs associated

with load balancing are often ignored or grossly simpliled. Simulation models driven by probabil-

ity distributions are capable of handling greater system complexity and thus solving a larger class

of problems, but it is still unclear how much error in the results is introduced by the distributional

assumptions made by the investigators.

To substantiate these criticisms, we traced a production VAX/UNIX* system for a number
of extended periods during working hours, and recorded the arrival times of the processest, as well

as their CPU and disk I/O demands. The distributions of these measurements are shown in Fig-

ures 1, 2 and 3, respectively. It can be seen that none of them follow sa exponential pattern.

The inter-arrival time distribution is not very far from exponential, whereas the CPU and I/O

demand distributions are both highly skewed 1. Similar observations have been made by other

researchers [5, 6, 161.

In this paper, we study the problem of dynamic load balancing using an approach different

from those mentioned above. Job traces collected from a production system are used to drive a

simulation program that implements a number of load balancing algorithms. In this way, we

eliminate the errors caused by assumptions about the workload. The costs of message exchanges

and job transfers are considered so that performance comparisons between the algorithms can be

made on an equal basis. Two broad categories of algorithms are commonly recognized. In source

* UNIX i a tradenirk u(AT&T Bell Labortorie.

tin a UNIX system, corresponds to a command lw input by a user, ad a number of Ieeness may be
crested to crry out the job. We will not insis o thin distinctine in this paper, ho"ever.

I For a Job' 1/O deamd, both ynchronou sad ,onoeh08us disk I/O's a considered, whi disk ew.le hits
are properly exclude

-4-

mean - 2.581 seconds
std. dew. m 4.923 seconds

number of jobs - 273,348

total duration -198 hours

exoeta

n3I " sn

A ladbaanin agoitm oniss f nmexpfoonents.

(1 Teinomain oic peiie he*outofladsd o ifrmtonmdeaaialet

job~~~~~ plcmn3eiinm.e0) n h a y hc nomtoni itiue.W

ma eqiethtth odso alte ot i hessemb aalbl o h ecso

make~s).Altenatiels ooonyprilifrainmybavlbe.P idcudts

ma e e t isrbuelodinomaino teinomain a b roieduo

reuet(dmndpllng.A itigise aen ayb ivlvdinth oa nfrato

disriutinor o uc agntmayexst

(2 hetanfr oic etrinsth liiilt o jbfo oa alnin asdonte o

an telod o tebot. tma ntbedsiabe frexmle t rasersml jb, a

Fibur fo. cotnbtisifdjbentrarrialoies

(3niTie palgorit lc dcds, the hostgiwhe e jobsetk the initativ to traisfe the jobs, hereasb

sucajosfe. An hosmt may l be mreade to severt the lestaed hme. Wn cthentratem o sorce

(1n Theabe botio ios spcihts thaon ofs loadnjo information mad avail f o uiable ta

-5-

1.0

0.0.

C
m 0.

a 0.7
t
v o.

e

D 0.6
i

0.4

r

0.5.

mea 1.529 seconds
S0.2 std. dcv. - 22.551 seconds

o number of jobs = 273,346
a 0.1. average utilization - 59.2%

total duration - 196 hours
0.0

.7 4 4 *4 .; .2 1 0 1 a a 4 8 s 7 5

Execution Time (power of 2)

Figure 2. Cumulative distribution of job CPU times (in seconds).

be found, the jobs will have to be processed locally.

The above three component policies of a load balancing algorithm are not isolated from each
other, but interact in various ways. For example, the load information available limits the possi-

ble transfer policies. Because of the large number of options for each component policy, it is

impossible to study all possible policy combinations in this paper. Instead, we shall concentrate

on the information policies and some of the related placement policies, while keeping the other
aspects of the scheme fixed. Specifically, we are interested in comparing the performances of the
algorithms using periodic updates and of those acquiring information on demand. For the periodic

policies, we want to evaluate the performance impact of a global agent that collects and distri-
butes load information of all the hosts in the system. We also want to study the problem of ins-
tability caused by a number of hosts sending jobs all at the same time to a lightly loaded host,
thus making it overloaded. A number of representative load balancing algorithms are defined and

studied in detail. However, our objective is not to select the best algorithm, but rather, to study

the characteristics of various types of algorithms and the tradeoffs between couflicting require-

ments.

The important results from this study include the following:

A load balancing scheme using any reasonable algorithm can improve the job response times

by 30-60%, and make them much more predictable.

LI

-low-

mean-181
N 150std. dev. - 92.77
U

b number of jobs - 273,348
e total duration -196 hours
r

o 1".
f
Ja
0

5 . exponential

p .
0

r

0

2'

aM No M no so s M

Number of Disk 1/O

Figure 3. Distribution or the number of disk I/O's per job.

* The mean response times of jobs on every host, even on those originally with light loads, are

reduced by load balancing.

* Periodic and mon-periodic information policies provide comparable performance.

* For the periodic information policies, the global algorithms impose less overhead on the sys-

tem than the distributed ones (typically half or less for systems with 20 or more hosts), and,

hence, can support larger systems.

* Greater performance improvement can be gained by increasing the system size, but the
improvement levels off beyond a few tens of hosts, at which point it becomes more advanta-

geous to implement load balancing in clusters.

* Instability may occur when load information is stale and the system load is high, but it can

be alleviated by simple measures.

" Load balancing can still be highly effective when up to half of the jobs that are otherwise eli-

gible for load balancing must be executed on their local hosts.

Our study also provides insights into the choice of a load balancing algorithm under different sys-
tem environments and load conditions.

In the next section, we describe the system we simulate and the structure of the model. We
also discuss the load and performance indices we use. Section 3 describes the algorithms that we

studied in the simulation. The simulation results are presented in Section 4, along with a discus-

sion and comparison of the algorithms. Some concluding remarks are made in Section 5.

.7-

2. Experiment Design

2.1. The Job Trace

A distinguishing feature of our study is the use of job traces instead of probability distribu-
tions to describe the arrival times and resource demands of the jobs. We traced a production
VAX-11/780 system running Berkeley UNIX to collect job traces consisting of tuples of the for-
mat

<job arrival time, CR3 time demand, number of disk I/0's>.

Previous measurement studies conducted by the author 1231 show that the CPU is the most con-
tended resource in the type of time-sharing systems from which the job traces are derived. There
is usually plenty of main memory, hence little paging and almost no forced process swapping
occur. The networking subsystem is not heavily loaded either. Therefore, we will consider only
CPU and disk 1/O in our model, while retaining confidence in the results of the simulation.

Heterogeneity, either architectural or configurational, complicates the load balancing prob-
lem greatly, and is a deviation from the primary concerns of this research. Therefore, we will
concentrate on homogeneous systems. In fact, to insure homogeneity and to ease the trace collec-
tion efforts, sessions of job traces were collected on the same host at different times to represent a
number of hosts connected by a network. t The selection of simulation session length is important
because the boundary effects caused by jobs started before the session begins and by those finish-
ing after the sessioc ends may significantly affect the accuracy of the results. On the other hand,
longer sessions involve greater efforts in trace collection and simulation. We chose the length of
each session to be four hours, Typically, about 600 processes awe created on each host during
this period. Even so, some of the processes executing during a session wre not included. Such
processes are mostly system services that are started at system hoot time and run until the Sys-
tem goes down, and a few very long batch jobs. Though small in number, they can represent a
significant portion of CPU time consumption. As a result, the simulated CPU utilizations during
the sessions are lower than in reality, typically by 5-15 percent.

2.2. Model Structure

The simulation model is of event-driven type fill, and its structure is shown in Figure 4.
We adopt a foreground-background round-robin scheduling policy for the CPU. The time quan-
tum is 100 milliseconds, the same as that, used in the Berkeley UNIX system from which the trace
was derived. After a job has accumulated S00 milliseconds of CPU time, it is put into the back-
ground queue, which will be checked only if no job is available in the foreground queue. Since
about 60-05% of the jobs have execution times below this threshold, they will not be sent to the
background queue, thus receiving priority service. While the CPU scheduling policies in computer
systems are usually more complicated, we feel that the above policy captures their essential
features, and may be considered representative. Since the level of contention at the disks is usu-
ally low under normal operating conditions in the type of system we measured [231, we model

IIt is reognized that, hy so doing, th6 pouis teuvp"~ corrismons betwe. the loads of the variou host wre

-8-

D~m

CPU Host i

u... L W .. L, Network

Imos I H I I N

L .. J 'T. - L I- .J

Figure 4. Structure of system used in simulation.

them as infinite servers causing only processing delays, but no queuing delays. I/O operations are

assumed to be evenly spread throughout the execution of the job t, and each disk 1/0 is assumed

to take 30 milliseconds. A communication network permits message passing and job transfers

between the hosts. Since we are most interested in load balancing in local distributed systems, we

assume that the underlying network supports broadcast (e.g., Ethernet). We also assume the

existence of a distributed file system so that the the costs of accessing the program and data fies

are roughly the same for all of the hosts. As a result, the files do not have to be moved with the

jobs to be load balanced. This assumption will be increasingly appropriate for future systems

designed for distributed computing. Since our trace data is derived from a time-sharing system

without the support of a distributed file system, we are unable to simulate the contention at the

file servers, and we also do not have measurement data on remote file accesses. The cost of 30

milliseconds for an I/0 operation is therefore a rough approximation.

S Recording the tinm of the I/O operations during job executios would greatly complicate our trace colection
effort and the model construction and siulation, without providing significant benefit, in tewu 0(model ae"-
racy, since the disks are not the point@ of contention.

2.3. Cost Assumnptions

There are basically two types of overhead costs involved in load balancing. First, current
load indices of the hosts have to be computed and messages exchanged to make them known to
the decision makers. Secondly, placement decisions need to be made and jobs transferred between
the hosts. CPU time and network bandwidth are consumed for these purposes. The latter of
overhead also directly introduces extra delays in the jobs involved. (So is the former if load infor-
mation is acquired while the job to be balanced is waiting, as is the case with a number of algo-
rithms to be studied.) It has been experimentally observed that, in moot current installations, local
area networks, such as the Ethernet, usually have plenty of bandwidth, and the delays in the net-
work are small compared to the CPU cost of executing the communication protocols 161. Conse-
quently, we only consider CPU time overhead in this study. We assume that message exchange
and job transfer have preemptive priority over job execution. Based on measurements from our
experimental implementations of load balancing on the VAX/UNIX and SUN/UNIX machines, we
assume that computing the current load and sending it out takes 20 milliseconds of CPU time,
while receiving load information and processing it takes 10 milliseconds. A job transfer is
assumed to take 100 milliseconds of CPU time for both the sending and the receiving host, and
causes 200 milliseconds delay to the job being transferred. This assumption seems to be less criti-
cal than that for message cost because the algorithms we study mainly differ in their information
policies; a change in job transfer cost is likely to change their performances by similar amounts.

It should be pointed out that the above cost assumptions are very approximate; the actual
costs in terms of the CPU times spent and the job delays introduced are highly sensitive to the
load conditions of the hosts involved and the network load. They are also dependent on the
implementation of the underlying system, as well as on the size of the message and on that of the
job.

2.4. Load sand Performance Metric*

In order to compare the performances of various load balancing algorithms, we need a
number of metrics. First, it is important to characterize the load on the whole system, as the per-
formance of load balancing schemes varies with the system load. We choose the average CPU
utilization of all the hosts over the entire session as the load level indicator since it represents the
level of contention for the most critical resources in the system. We are also interested in a load
indez that we can use to predict the response time of a job if that job is executed on a particular
host. Ferrari (111 pointed out, using mean value analysis, that a linear combination of the
resource queue lengths in a computer system can be an excellent predictor of job response time,
with the coefficients being the estimated resource consumption& of the job. In a previous measure-
ment study [231, we found that the CPU queue length has a high correlation with the job response
time in a CPU-bound host, and hence suggests itself as a good load index.

To measure and compare the effectiveness of load balancing algorithms, we seed to define a
performance indez. We choose the mean job response time because decreasing the job response
time is our primary objective of load balancing. However, this does niot measure the variability of
the job response times. We will use the standard deviation of the response times of all the jobs to
complement the mean response time.

-10.

3. Load Balancing Algor'ithms

We studied seven algorithms that use different types of information policies and related
placement policies. For ease of comparison, we base the transfer policy of all the algorithms on
the local host load and job execution time thresholds. When the CPU queue length of a host is at
or below a threshold, all jobs arriving there are processed locally. Otherwise, all the jobs arriving
at that host and with execution times above a certain threshold are eligible for load balancing.
Although job execution times are difficult to predict, it is possible to classify the jobs into two
rough categories: "big" jobs which are worth considering for load balancing, and "small" jobs not
to be considered. Moreover, estimation errors can be easily tolerated, as long as they are not too
frequent. Our studies of jobs submitted over 30 days show that such a classification can be made
with a very high success rate simply by looking at the job names. For example, a text processing
job will almost certainly take over 1 second of CPU time, whereas a directory checking operation
is clearly not worth considering for load balancing. One result of this research is that the perfor-
mance of the load balancing algorithms is quite robust with regard to the job execution time
threshold (See Section 4.4).

The following algorithms were studied:

GLOBAL

Every T seconds, one of the hosts, designated as the load information center (LIC), receives
load update from all the other hosts and assembles them into a load vector, which is then
broadcast to all the other hosts. If the load of a host is the same as that sent out the last
time, however, no update needs to be sent to the LIC. This applies to the next algorithm,
DISTED, as well.

The placement policy of the GLOBAL algorithm, as weUl as that of the next algorithm, is as
follows. The local version of the load vector is searched for a host with the shortest CPU
queue length, and, if the difference in CPU queue length between the local host and the
potential destination is at or above a given limit I (usually I or 2), the job is sent there. If
there are several hosts with the same shortest queue length, which is often the case, the first
one is selected. This rule, together with a randomized stairting point for the search, can
potentially alleviate the instability problem as we will discuss later.

DISTED

Instead of reporting the local load to a centralized LIC as in GLOBAL, each host broadcasts
its load periodically for the other hosts to update their locally maintained load vector.

CENTRAL

In the above two algorithms, placement decisions are made by each hoot using the local ver-
sion of the load vector. In the CENTRAL algorithm, there exists a central scheduler for all
the hosts. When a host decides that a job is eligible for load balancing, it sends a request to
the central scheduler, together with the current value of its load. The central scheduler
selects a host with the shortest queue length and informs the originating host to send the job
there. The load vector on which the scheduler bases its decisions is updated using only the
load information sent by the hosts with the job requests.

CENTEX

The same as CENTRAL except that, periodically, each host sends its local load to the LIC
(CENTral with EXchange). This algorithm can be regarded as a hybrid of GLOBAL and

CENTRAL.

For the above four algorithms, the load vector used in the placement decision is updated by

increasing the load of the destination host by in adjustable constant (currently 1). All the algo-

rithms assume that the loads of all the hosts are known to the placement decision makers, with

some delay. The algorithms below use less system state information, and thus have smaller over-

head costs.

RANDOM

This algorithm uses minimum load information. When a job is found to be eligible for load
balancing, it is sent to a randomly selected host. The receiving host treats the transferred
job exactly as if it had arrived locally. To avoid the undesirable situation in which a job
bounces around indefinitely, we set a limit L such that the Lt'th host receiving the job has

to process it no matter what its load is.

THRHLD

A number of hosts up to a limit L, are polled when an eligible job arrives, and the job is
transferred to the first host whose load is below a fixed threshold. If no such host is found,
the job is processed locally. When the message exchange cost is much lower than the job
transfer cost, this algorithm wins over RANDOM by avoiding costly job transfers.

LOWEST

This is similar to THRHLD except that, instead of using a threshold for the placement, a

fixed number of hosts are polled and the most lightly loaded host is selected. Thus, when
message overhead is higher, a potentially better host may be selected than by THRHLD.

The last three algorithms above are identical to the ones studied by Eager et al. 19j How-

ever, we use a trace-driven simulation method to evaluate them, and we compare them to those

algorithms that use a load vector. The algorithms above make placement decisions on the basis
of various amounts of system state information. Since we consider the overhead costs of load
balancing explicitly, a direct assessment of the appropriate amount of load information for load
balancing can be made.

For comparison, we also implemented three boundary cases of load balancing:

NoLB

No load balancing is attempted; all arriving jobs are processed locally.

NoCOST

This is the unrealizable ideal case in which the current CPU queue lengths of all the hosts
are known to the transfer decision makers at so cost (in terms of CPU time and job delay),.

and the transfers of jobs are also assumed to be costless.

PartCOST

This is the partly-ideal case in which perfect load information is assumed to be known at no
cost, but job transfer costs are considered.

-12-

The performance of all the algorithms can be expected to be between those of NoLB and
NoCOST.

There are a large number of potentially useful load balancing algorithms besides the ones
listed above. As we stated earlier, our primary concern in this paper is not the particular algo.
rithms to use, but rather the effects of different approaches to load information gathering and
placement decision making.

4. Simulation Results

Simulation runs with various system sizes and load levels were executed. To make the per-
formance comparisons between the algorithms meaningful, a number of simulation runs were con-
ducted for each algorithm with different adjustable parameter values (e.g., job threshold, load
exchange period), and the best response time was selected. In this way, the comparison, are
between the best achievable performances of different algorithms, and it is hoped that they reveal
the qualities of the algorithms. The results of the simulation experiments are presented in the fol-
lowing sections.

4.1. Comparison of the Algorithms

Figure 5 shows the average response times of a system of 28 hosts under the load balancing
algorithms described above. Since job traces are used to drive the model, we cannot control the
utilization of the system. However, it is essential to observe the performance of the algorithms

under various load conditions. We achieve this by multiplying the job interrival times by a con-
stant factor. By varying the multiplication factor, we are able to generate a number of points for
each algorithm. Although the job stream is altered, the job characteristics (i.e., execution time,
number of 1/0) remain the same. We feel that such a modification to the job stream is unlikely

to introduce significant errors in the results. t

The first observation in Figure 5 is that all the algorithms provide substantial performance
improvements over a wide range of system loads, compared to the NoLB case. In fact, response
times reasonably close to those of the NoCOST case are achievable. The higher the system load,

the greater the improvements. While we observed a greater-than-average improvement in the
mean response time of big jobs (e.g., with execution times greater than 1 second) the mean
response time of the small jobs does not suffer as a result. Figure 5 also demonstrates clearly the
relative performances of the algorithms. The performance of CENTRAL is the worst of the
seven. This is mainly because the global scheduler relies only on the load information provided
with job scheduling requests. it is observed that the frequency of placement decision making for

each host is one per 3-20 seconds, when the job threshold is 0.54.0 second. At such long inter-
vals, the loads of the hosts are likely to have changed substantially. Consequently, a high percen-

tage of the global scheduler's decisions are wrong.

In sharp contrast, the CENTEX algorithm, which is the same as CENTRAL except that
load information is periodically reported to the LIC, provides the best performance among the

t Two other ehokes we to mutip the job *euion Unin by a faetor, and to m dldereaa job om . lowe-
or, they both %lter the job cbaractehuirt ad seem to introduce more chaage to the workload thus the ashod
we used, thus nking the eomoarieo. of performaseu under dileret workload mb hen uahntiuL

* 13-

*.0

-NoLE N -CENTRAL*

DISTED X

7.0. s RANDOM A
a ii

0o / D - GLOBAL 0S

p . .I \
a / LOWEST 0

4.0..0 PartCOST +

0

d: 2.0
S

1.o

oo

46.0 5.0 65.0 75.0 .0 ;0s

Averag Host Utilicio (percent)

Figure 5. Average response times under different load levels (28 Hosts).

seven. It has been widely assumed that, in distributed systems, centralized solutions are undesir-
able because they tend to create performance bottlenecks and single points of failure. Such a
view, however, may be too simplistic if unqualified. The best solution is environment and problem
dependent. For load balancing, if the interprocessor communication is relatively efficient (such as
the case in this paper), and the system scale is limited (up to 50-100 hosts), the centralized
approach to load information distribution and job placement may be simple and efficient, as
demonstrated by Figures 6 and 6. The costs of job placements is reduced for all the hosts except
the LIC, as they now only need to send local load information and placement requests to the LIC,
rather than maintaining system-wide load information and performing placements themselves.
For the LIC, we observed that up to 35% of its CPU time may be spent for load balancing func-
tions supporting a system of 49 hosts. Although this is a high overhead for this host, it is a small
price to pay for the whole system. In return, excellent placement decisions based on up-to-date
information are achieved. This explains why the performance of CENTEX is slightly better than
those of THRHLD and LOWEST, which only attempt to select a host from a small subset of the

.14-

hosts. For many distributed applications, availability is crucial, hence a centralized solution is not

appropriate. This is not the case with load balancing, however. If the LIC goes down, some other

host can quickly detect the condition and take over its role. The loss of load information is not a

serious problem because load information becomes obsolete in a short while anyway. The brief

interval during which load balancing is unavailable should be easily tolerable because load balanc-

ing is not an essential system service such as the naming service; its absence should in no way

interfere with system operations. In fact, an implementation using essentially the CENTEX algo-

rithm has been reported to provide effective load balancing [131. In that environment, inter-host

communication is extremely fast, and the global scheduler is claimed to be able to process 1000

requests per second.

The comparison between the GLOBAL and DISTED algorithms is highly instructive. Since

they are the same, except for their information policies, the significant performance difference

reveals the advantages of using a global agent as a relay point for load information exchange.

Assume that there are N hosts in the system, and let the update period be T seconds, and the

cost of sending and receiving a message plus related processing be -M..w and M,.,, respectively.

For GLOBAL, the overhead due to the load information exchanges is
CUC (N - 1) x M,. + M., x 100%

for the LIC, and

C - M ,,+ M , X 100%

for the other hosts. Except for the LIC, the message overhead is independent of the system size

N. In contrast, for the DISTED algorithm, the message overhead for every host is
¢ -(N - 1) x M,. + M,,w 10

because, during each interval of duration T, every host has to process the messages broadcast by

every other host. t Compared to GLOBAL, we do not have a central point of failure and an extra

level of indirection in the distribution of load information in DISTED, but the overhead is higher

for every host, and grows linearly with the system size. Since the availability considerations are

not important, as discussed above, the GLOBAL algorithm appears more attractive than

DISTED.

One somewhat surprising result from Figure 5 is that the two drastically different algo-
rithms, GLOBAL and LOWEST, provide almost identical response times under a wide range of

system loads. The GLOBAL algorithm uses more extensive system state information in an effort

to make optimal transfer decisions. To achieve this, load information is exchanged at a high fre-

quency, thus incurring high overhead. In the simulation runs, the value of T that provides the

best performance for GLOBAL is between 0.75 and 3 seconds. At such a high frequency, 1-3% of

the CPU time in every host is spent exchanging load information. The LOWEST algorithm does

t Due to the poiy a(not mnding out the local lod intonutio i it is the mame w last time, the actual am.
beads of GLOBAL ad DSMIE are mw than presented here, typisl by 4 .70% but the order anases here

6re sti vald.

K - 15.

not attempt to select the globally "best" host for job transfer, but rather only selects the least

loaded among a small group of randomly picked hosts. Although the time it takes to poll the

hosts directly increases the response time of the waiting job, more up-to-date load information is

used for job placement. A main reason GLOBAL is not able to perform better than LOWEST is

that there exists a fundamental contradiction between the need to frequently update the load vec-

tors at each host and the low utilizations of the load vectors. If the exchange period is 1.0 second,
and the rate at which transfer decisions are made by a host is one job every 10 seconds, then 90%
of the load exchanges are wasted.

The above discussion seems to confirm the assertion made by Eager et &l. [91 that more

complicated algorithms than THRHLD and LOWEST are not likely to provide substantially

better performance. In fact, the difference between LOWEST and the unrealistic NoCOST algo-
rithm is already quite small. However, we do not observe the significant improvement from RAN-

DOM to THRHLD, which was observed by Eager et al. This may be due to the fact that these
authors did not consider the message exchange costs explicitly in their study.

4.2. Effects of System Scale

Scalability is an important issue in load balancing. On the one hand, a larger pool of hosts

might improve the performance of load balancing. On the other hand, the overhead of load
balancing might grow with system size, and the management of the system becomes harder. The
average response times of the ten algorithms in systems containing 7, 14, 21, 28, 35, 42, and 49

hosts are shown in Figure 6. To make the comparisons meaningful, the overall system utilizations
are selected to be within a narrow range (see the host utilization numbers for the NoLB case at
the top of Figure 6), and the response times are normalized against that of NoLB.

The negative slopes of the NoCOST and PartCOST, as well as those of some of the other
algorithms, suggest the presence of economies of scale. As the number of hosts in the system

increases, the probability of finding a lightly loaded host increases, and the average response time
can be expected to decrease. This is most obvious for the NoCOST case, where the overhead
costs are not considered. For the more realistic algorithms, the overhead may increase with the
system size, making the increase in system size a mixed blessing. Therefore, the scalability of an

algorithm is an important property. On the other hand, it is interesting to observe that, as the
number of hosts increases beyond 28, the response times improve very little. Therefore, a scala-
bility up to a few tens, or at most a few hundreds of hosts, seems sufficient. Beyond that point, it
makes more sense to implement load balancing using several clusters and perform inter-cluster

load balancing using longer-term load information. This observation further enhances the values

of algorithms such as CENTEX and GLOBAL.

Again, in Figure 6, we observe the relative performances of the algorithms. The scalability
of RANDOM, THRHLD and LOWEST is very good. (Their curves are almost parallel to that of
NoCOST.) This is because the number of hosts polled by the algorithms when a placement deci-

sion is made is independent of system size. Comparing GLOBAL and DISTED, we see that the
former scales much better, which may be explained by the overhead analyses in Section 4.1. We
can see two conflicting factors in action by looking at the performance of the DISTED algorithm.

On the one hand, an increase in system size makes it easier to find a host with low load. On the

other hand, the message overhead grows linearly with system size. The composite effect is a

- 16 -

UTM 61.0% 0.7% saLz% GLT% uSL% uSL% s.7%

.-- NoLB a

0.90

R

p
*o.0

T
i 0.70. i CENUTRAL +

In

! DBtFED x

d RANDOM A
d 0 0 ..-. GLO AL 00.3 4 THRHLD V

~CENTEX *

14 21 S U

Number ofrHaw

Figure 6. Average response time with different system sizes.

(normalized aganst the NoLB cane)

moderately rising curve for the normalized response time. CENTRAL remains the worst in all

cases, while CENTEX demonstrates very good performance and satisfactory scalability.

4.3. Effects of Load Balancing on Individual Hosts

In the previous studies of load balancingi, it bas been rrequestly assumed that the boots in

the system are subjected to the same level of load 19, 17, 211. (The job arrival rates and the pro-

cessingi rates of all the bots are the same.) However, this in usually not the case in production

environments. It is very interesting to study the effect of load basanet on &be individual bots,

especially those originally with light loads. At the begiinningl of this research, we conjectured that,

while load balancing may improve overall system performance and &bat of the heavily loaded

bots, the liglhtly loaded ones may suffer degiradations is their performance becaus additional jobs

are transferred to them. We were, therefore, pleasantly surprised by the results from the sinula-

tions. The averag~e response times of the individual bots, with and without load balancingi, are

° 17-

shown in Figure 7. As can be observed, the performances of al hosts are generally improved,
with the hoots under heavy loads showing greater improvements. Figure 7 clearly demonstrates

the power of dynamic load balancing: system performance may be greatly improved by taking

advantage of the temporal differences among the hosts' loads, and even boats with light loads

benefit as congestions on them, though infrequent, can be relieved by other hosts.

10.0 &U o.. NMB
M 9.0 MWIVN

a to Locci?
n I

R 8.0.
e
£ 7.0.
P

1 6.0-e

5.0-

m 4.0-
e

(3.0-

e• 2.0

0
d 1.0,
)

0.0'

1 2 3 4 5 6 7 8 91011121314
Host Number

Figure 7. Mean response times of individual hosts.
(Utilization without load balancing is 63.3%.)

Another beneficial effect of load balancing revealed by Figure 7 is that it makes the response

times more predictable. For some environments, this is even more important than the reduction
in the mean response time. Figure 8 provides a direct measure of this effect: while the average
response time is cut by a factor of 1.5 to 2.0, its standard deviation is cut by a factor of 2 to 4.

The measurements in Figures 7 and 8 are taken when the system is moderately loaded (the utili-
zation for the NoLB case i 63.3%). The improvements of the mean and standard deviation of
response time are observed to be more dratic when the system load level i higher.

The term load balancing has in it the implicit meaning of equalizing the loads of the partici-

pating boots. Though thi is not our objective, the equalizing effect of the algorithms studied in

this paper can be clearly seen in Figures 9 and 10. This is more pronounced with GLOBAL and
DISTED than with LOWEST because of the attempt of the former two algorithms at system-wide
optimization. It is interesting to note, in Figures 7 and 10, that the overage response time of all
the jobs originating from a hoot may decrease while the boot's utilization increases. The amount
of overhead introduced by t load balancing algorithm can be found in Figure 10 by subtracting

- I8-

149 40-41 aDO
IMm W-** LOWUTr

S'
t
a
am
d
r

D
emIas.j i
t

0

10

1 a a s a 4 6 3 u 1s as 14

Host Number

Figure 8. Standard deviations of response times of individual hos.
(Utilization without load balancing is 63.3%.)

the average CPU utilization with so load balancing from that obtained with a specific algorithm.
As can be expected, the overhead of GLOBAL is higher than that of LOWEST, while both pro-
vide similar performance. This is mainly because of the high frequency of load information
exchanges in GLOBAL. The overhead on the LIC in GLOBAL is proportional to the system scale,

and is higher than that on the other hosts. This is reflected by the signilfcant increase in utiliza-
tion of host 1, which we use as the LIC. While this reveals the limitation of the scaling ability of
the algorithm, we do not consider it a serious drawback because our simulation results show that
a single LIC is capable of supporting 50-100 bost under our cost assumptions. At that point, the

economies of scale have almost no effect, and it is reasonable to implement load balancing in
several clusters.

4.4. Parameter Selection and Adaptive Load Balantcsg

Once the load balancing algorithm is decided, the performance is still sensitive to the specillc

parameter values adopted. In this section, we asew the degree of such sensitivity. The adju-
stable parameters depend on the algorithm. For all of the algorithms, we have a local load thres-

hold and a job threshold. In addition, for the periodic information policies, we have the load
exchangt period, whereas for the mon-periodic policies, we have the probe limit. Figure It shows
the performance of the GLOBAL algorithm under various parameter combinations. The local

load threshold is set to zero. We can see that the exchange period has a strong inluence on the

IS"-6~ ~mlm u

-19 -

am - i

am 1---4 Q

am * .LOAW
03 mi -- mo

A
V
er as
a

e

QU

e

L

e

h

10

Host Number

Figure 9. Average queue lengths of individual bosts
under different load balancing algorithms.

(Utilization without load balancing is 63.3%.)

performance. When the period is too short (e.g., 0.35 second), the overhead is so high that, even
though the load information on which the transfer decisions are based is very up to date, the per-

formance suffers. On the other hand, if the exchange period is too long (e.g., 10 seconds), the load

information is so out of date that frequent mistakes are made in job placements. (Jobs are sent

to hosts with equal or higher load than the local host.)

In contrast, performance seems to be les sensitive to the job threshold. (The average

response time when only jobs with CPU execution time greater than 1.0 second are considered for

load balancing is close to those when jobs above 0.5 or 2.0 seconds are considered.) This observa-

tion supports our earlier claim that only an approximate separation between big and small jobs is

necessary to achieve good performance. Looking more closely, we again observe a similar pattern
with the job threshold: when the job threshold is too high (e.g., 3 seconds), the ful potential of

load balancing is not realised, whereas when it is too low (e.g., 0.25 second), the overhead of job
transfers outweighs the beaelt, and performance becomes worse. There is also interaction

between the two parameters; when the exchange period is lengthened, the corresponding optimal

job threshold increases.

It is important to recognize that the combination of parameters that yields the best perfor-

mance is highly dependent on the system load level. Table 1 attempts to illustrate this. Gen-

erally speaking, the higher the load, the higher the job threshold and the longer the exchange

-20-

97J% =4 UwAL

55.4% .-- Lowgrr
0.76. 6".% ~4 NO

t ,

i Is

0 0.6 ; 4 S

US

oJo

S 8 4 5 5 7 5 o10 1 1'2 IS 14

Host Number

Figure 10. Utilizations of individual hosts under different load balancing algorithms.

period should be. For LOWEST, an increase in the probing limit may yield poorer performance
when the load is high.

The sensitivity of load balancing performance over the parameter values sugests that some
form of adaptive load balancing may be able to provide good performance when system load
changes widely. Under adaptive load balancing, the system load is constantly monitored, and
changes in algorithms and/or adjustable parameters are made us the load changes so that the sys-
tem is always operating at, or close to, the optimal point. Supporting multiple algorithms
involves complicated implementation, and changes in algorithms cannot be made frequently.
Furthermore, for the most promising algorithms, GLOBAL, CENTEX, and LOWEST, the perfor-
mance differentials are quite small. Consequently, the gain from switching algorithms is probably
insignificant, and therefore not worth the effort. However, we are not making a general statement
here; for environments different from ours, and for algorithms other than the ones we studied,
using different algorithms under different loads might be quite advantageous.

In contrast to algorithmic change, parameter adjustments are much simpler, and capable of
significantly improving performance when the system load luctuates widely. Here, we need a
system-wide mechanism that monitors load conditions and makes adjustment decisions. GLOBAL
and CENTEX are the most appropriate for this purpose. The LIC periodically receives load infor-
mation from all the hosts, and can use such information to deduce the system state. It can then
send to the hosts the parameter values they should use.

- 21 -

0-0Job 7Wd - 0 Dm
O 0-'--0 * lm -- h~Um t.

----V Job Tod - L

-- 4 Jab Id -UrSn

4. IU /

S 40L

41 /

* / '

1.4

&.2

Figure 11. Effect of Adjustable Parameters on Load Balancing Performance.

(GLOBAL, 14 hosts, utilization without load balancing: 72.3%)

4.5. Avoidance of Instabllity

The problem of instability introduced by load balancing is of major concern to the research-

ers in this field. It is feared that, because of the delay in load information exchanges, several

hosts may transfer jobs to a once lightly loaded host, and cause it to be overloaded. After the

load information is updated, some other host(s) may become the victim(s). We call such

phenomenon of overloading hosts in turn host overloading. Another form of instability is job

thrashing, in which jobs are transferred too many times (or even for an indefinite number of

times, as analytically shown in [91 for RANDOM) in an attempt to Bund the optimal host for job

execution. Host overloading causes performance degradation because of unstable and uneven load

distribution among the hosts, whereas, for job thrashing, degradation is mainly due to excessive

job transfer overhead. Since we wre mostly concerned with algorithms that transfer jobs only

once, we will study the host overloading problem here.

We consider a job transfer wrong if the destination host's CPU queue length is equal to or

greater than that of the originating boat. There is a distinction between transferring a job

wrongly and collectively overloading a host; the former by itself will only increase the particulW

job's response time, whereas the latter will potentially case system-wide performance degrads-

tion, due to the aggiravated effects of the individual wrong transfers. This problem can be serious

because usually the transferred jobs are big. In order to quantitatively measure the level of host

over loading occurring in a system, we define the htost overloading ftor 7 to be the percentage of

-22-

Table 1. Optimal Parameter Values under Different System Load Levels (28 hosts).

Utilization (%) 48.1 56.2 63.3 72.3 79.1 85.1 92.1

GLOBAL

Load Exch Pd 0.5 0.5 0.75 1.0 1.5 2.0 3.0

Job Thrd 0.4 0.5 0.5 0.75 1.0 1.5 2.0

DISTED

Load Exch Pd 1.5 2.0 2.5 3.0 4.0 5.0 7.5

Job Thrd 0.4 0.5 0.75 1.0 1.5 2.0 2.5

LOWEST

Job Thrd 0.4 0.5 1.0 1.0 1.5 2.5 4.0
Load Thrd 0 0 0 0 0 0 0

(The numbers are approxnate, as only a sparsely allocated at of operating points in the multi-dirmnsioual paruneter

space tftested for ech algorithm)

wrong job transfers over all transfers:

T number of wrong tranalero X 100%tota number of tranifer I

There are a number of factors that affect the level of host overloading, all having something

to do with the rate at which wrong transfers are made to a host because T" is roughly proportional
to this rate. First, the staleness of load information has a deciding effect. The staler the informa-
tion, the more the jobs that are transferred wrongly. Therefore, the non-periodic information pol-
icies that collect load information on demand are less susceptible to host overloading than the
periodic policies. Another important factor is the rate at which jobs that are candidates for
transfer arrive. This depends on the system load level and the job threshold. The higher the load
and the lower the job threshold, the larger the percentage of eligible jobs. To verify our intuitive

argument, we calculated T" in simulation experiments for the GLOBAL algorithm using various
load exchange periods and job thresholds. Since it is difficult to consider three factors all chang-
ing at the same time, we ixed the system load level at 79%. Such a system-wide utilization is
high, and bost overloading may be expected to be quite serious. The results are shown in Figure
12, and agree with our intuition. It seems that host overloading does not have as disastrous
effects on system performance as we feared: very good performance can be achieved even when

there exists light overloading (r < 10%).

Besides load update frequency and job threshold, the system scale also affects host overload-
ing, but to a lesser degree. It is important to know the number of hosts with the least load. For
the algorithms studied in this paper, placement decisions are based on the instantaneous CPU
queue lengths of the hosts. Since there may be more than one host with the same shortest queue
length, the transferred workload may be shared by them, thus reducing overloading. A larger

- 23 -

ArAJob IWd - &V

*,-., " Mud - toML

0
S 0.30V/

e
r/
I/
0 .I /

d /

n / .

o

c 4P

CLO
t

0M

Load Exchange Period (second)

Figure 12. Percentage of wrong job placements for GLOBAL under

various load exchange periods and job thresholds.

(Number of hosts: 14, Average utilization: 79%)

system size makes such situation more probable. On the other hand, in a larger system, there are

also more sources of transferred jobs. To quantitatively study the number of hosts with the least
load as a function of system size and load update period, we recorded the load vector at a high

frequency during a simulation experiment for GLOBAL, and counted the number of hosts with the
least number of jobs at their CPU's. The actual shortest queue length is unimportant because we

are only concerned with the relative distribution here. Figure 13 shows the distributions for sys-
tems with 14 and 28 hosts, and the exchange period fixed at 5 seconds. For shorter exchange

periods, the means of the number of hosts with the least load are slightly lower. We find that the

probability of having only one or two hosts with the least load is non-negligible; hence host over-

loading can occur, as revealed using another metric in Figure 12. Consider the following case,
which was found to be typical: for a system with 14 hosts and a load level of 80W%, the total rate

at which jobs are transferred by the GLOBAL algorithm using a job threshold of 1.0 second is 1-2

jobs/second. This means that, if we update load information every 5 seconds, 5-10 jobs may be
transferred to the single host that used to have the least load! This range is reduced to 1-2 jobs if

the exchange period is 1.0 second, and even lower if the system load is not at such a high level.

Hence, we see that whether host overloading occurs depends primarily on the system load and the

load exchange period.

- 24 -

24.0

P
e 20.0
r

c 1 4 hosto, UT i 79. ma m 3.2

en
t 16.0
a
S 14.0
e

12. 2 hosU. r 79%T a 6.3

f
10.0

8.0.tso

e
r 6.0

a 4.0.

2.0

0.0

0 2 S 4 6 7 0111213 14 1 16 17 13 19

Number of hosts with least load

Figure 13. Distribution of the number of hosts with the least load.

Load Expd - 5.0 see., Job Thrd - 1.0 see.

4.8. Immobile Jobs

Throughout our studies so far, we have assumed that the jobs are mobile, that is, they can

be executed on any host in the system with exactly the same results. Although this assumption

holds for a large subset of the jobs, we do observe that some of the jobs are immobile. Examples

include jobs that perform local services and/or require local resources, such as system daemons,

login sessions, mail and message handling programs, and so on. There are also highly interactive

jobs, such as command interpreters and editors, for which remote execution will result in poor per-

formance due to network latencies. Any implementation of load balancing must take the effects

of these immobile jobs into consideration. We define the immobility factor to be the percentage

of jobs that have to be executed on the local host, but are otherwise eligible for load balancing.

By varying the value of the immobility factor, the effect of immobile jobs is revealed. For a sys-

tem of 28 hosts with an average CPU utilisation of 63.7%, the results are shown in Figure 14.

The concave shapes of the curves are encouraging, as they indicate that efective load

balancing is still possible even if a significant proportion of the jobs are immobile. For an immor

bility factor of 0.4, the mean response time is only slightly higher than that for the case in which

all jobs are mobile (the immobility factor being 0). This observation is not surprising because

load balancing is achieved by only transferring a portion of the eligible jobs. (Typically, 50-70%

of the eligible jobs were actually transferred in the simulation experiments.) Consequently, even

though some of the eligible jobs are immobile, the rest of them can still produce most of the

- 25-

M
e

n

e

n/
s

e
4.04

T

e CCALO

C
0n 2.

d

0.0 0.2 0.4 A 0.8 1.0

Immobility Factor

Figure 14. Effect of immobile jobs.

performance benefits due to the balancing effect.

S. Concluslons

In this paper, we studied the load balancing problem using simulation models driven by job

traces collected from a production system. We simulated a CPU scheduling policy that is believed

to be representative, and we considered explicitly the costs of load information exchange and job

transfers. Because of the generality of the model and the use of live system data, the results of

our simulation are believed to be more reliable than those from analytic models or simulations

driven by probability distributions. On the other hand, our results might be biased towards a par-

ticular type of computing environment.

Seven load balancing algorithms were studied, including both ones using periodic information

policies and ones using non-periodic policies. We found that load balancing using any reasonable

algorithm can provide substantial performance improvement over the NoLB cawe. Specifcally, the

average response time of all the jobs may be reduced by 30-60%, and the reduction in its stan-

dard deviation is even more drastic, making the job response times much more predictable than in

the NoLB case. The higher the load, the greater the improvement, and longer jobs benelt mor*

from load balancing. Looking more closely, we found that the performance of all hosts, even

those originally with light loads, improve under effective load balancing. This is somewhat

counter intuitive, but very encouraging: by cooperating with each other, no one loses. We also

observed a strong tendency of load balancing to equalize the loads of the individual hosts; both

20-

the utilizations and the average CPU queue lengths of the hosts cluster within a small range.

By varying the size of the system, we observed significant but limited economies of scale.

For example, when four systems each with 7 hosts, or two systems each with 14 hosts, are com-
bined into a single system of 28 hosts, the average response time i significantly reduced for the

algorithms with good scalability. However, beyond 28 hosts, the improvement diminishes quickly.

Consequently, a scalability of an algorithm up to 50-100 hosts seems to be sufficient, and cluster-

ing techniques should be used in large scale systems to avoid the potentially increasing overhead

and the management complexities.

For the periodic load information policies, we found that the global approach has much less
overhead than the distributed approach, and, therefore, performs better and is more scalable. The

periodic and non-periodic policies provide comparable performances under our cost assumptions.

The algorithms that collect load information on demand (RANDOM, THRIHLD and LOWEST)

have the advantages of lower message exchange overhead, of being able to scale better, and of

V. being less susceptible to host overloading. On the other hand, the algorithms that rely on periodic
load exchanges (GLOBAL, CENTEX, and DISTED) have the advantages of being able to poten-

tially choose the optimal hosts for job transfers, thus offering better performance, and of not sub-
jecting the jobs eligible for transfer to the delays in getting load information.

The performance of load balancing using the algorithms studied in this paper is found to be
quite sensitive to the values of the local load threshold, load exchange period, and host probing

limit. The combinations of the parameter values that provide optimal performances are in turn
dependent on the system load level. Consequently, adaptive load balancing has the promising

potential of maintaining optimal performance under changing system coniguration and load. The
GLOBAL and CENTEX algorithms are the most appropriate for this because of the presence of

the LIC. More research is called for in this area.

Host overloading is not signiflcant for non-periodic algorithms, but may be serious with the
periodic algorithms. The deciding factors ae the load update frequency, the system load, the job
threshold, and the system size. By using reasonably up-to-date load information and only
transferring a small percentage of jobs, host overloading can be electively alleviated. Suboptimal
placement decisions may produce better performance than "optimal" decisions, because overload-

ing on one or a small number of hosts may thus be avoided. Host overloading is sot as serious as

we expected - very good performance can be achieved even when it occurs occasionally.

The impact of immobile jobs on load balancing is found to be less serious than the immobil-
ity factor might suggest: most of the performance gains are still retained evs when up to 50% of

the jobs are immobile.

We have been very much encouraged by the trace-driven simulation approach taken in this

research; it proves to be capable of handling greater complexities and of providing more credible
performance results than the approaches used before in load balacing research. On the other

hand, we only used data from a particular type of time4haring environment, and so the generality

of our results is limited. The simplifying assumptions made in this research, though less unrealis-
tic than those of the previous studies, may also have introduced erron in our results. It would be

very interesting to apply the techniques used in this research to other types of computing envirou-
ments, especially server-based workstation environments, sad to compare the indings. Such

-27-

efforts are currently being planned.

In view of the proliferation of distributed systems, and of the great potential of load balanc-

ing as demonstrated in this research and by other authors, it is highly desirable that load balanc.

ing be made a standard service in future distributed systems to substantially increase the perfor-

mance of the system without adding any resources. Unfortunately, only a few implementations

exist, and most of them were done in an ad hoe fashion 12, 13, 14, 201. Besides the implementa-

tion difficulties involved, a general lack of understanding of the performance characteristics of the

algorithms proposed and the engineering tradeoffs involved are the major obstacles. Trace-driven

simulation appears to be an appropriate tool for load balancing studies, and should be well
exploited before an implementation effort starts, because the latter is much more costly.

8. Acknowledgement&

The author wishes to express his deep gratitude to Domenico Ferrari for his invaluable

advice and continued support and encouragement throughout the course of this research. Com-

ments by David Anderson, Hamid Bahadori, Luis Felipe Cabrera, Joseph Pasquale, and Harry

Rubin inspired a significant revision and improvement to the paper, and are gratefully ack-
nowledged.

7. Referenes

III A. Barak and A. Shiloh, "A Distributed Load Balancing Policy for a Multicomputer,"
Department of Comp. Sci., The Hebrew University of Jerusalem, 1984.

[21 B. Bershad, "Load Balancing with Maitre d'," Tech Report, UCB/CSD 85/276, Computer
Science Division, University of California, Berkeley, December 1985.

[3j S. H. Bokhari, "Dual Processor Scheduling with Dynamic Reassignment," IEEE Trans. Soft.
Eng., SE-5,4, July 1979, pp. 3414349. pp. 47-M6.

[4j R. Bryant and R. Finkel, "A Stable Distributed Scheduling Algorithm," Proc. International
Conf. on Distributed Processing Systems, 1981, pp. 314-323.

151 L. F. Cabrera, E. Hunter, M. Karels, and D. Mosher, "A User-Process Oriented Performance
Study of Ethernet Networking under Berkeley UNIX 4.2 BSD," To appear in IEEE Trans.
Soft. Eng., aso as Tech. Report, UCB/CSD 84/216, Computer Science Division, University
of California, Berkeley, December 1984.

161 L. F. Cabrera, "The Infuence of Workload on Load Balancing Strategies," Proc. 1986 Sum-
mer USENIX Conference, Atlanta, GA, June 1988, pp. 446-458.

171 Y. Chow and W. Kohler, "Models of Dynamic Load Balancing in a Heterogeneous Multiple
Processor System," IEEE Trans. Comp. C-28,5, May 1979, pp. 354-361.

181 D. Eager, E. Lazowska, and J. Zahorian, "A Comparison of Receiver-Initiated and Sender.
Initiated Dynamic Load Sharing," Tech Report 86-04-01, Dept. of Comp. Sci, Univ. of
Washington, April 1985.

191 D. Eager, E. Lazowska, and J. Zalaorjan, "Dynamic Load Sharing in Homogeneous Distri-
buted Systems," EE Tranm. Soft. Eng., SE-12,5, May 1986, pp. 662-675.

1101 D. Ferrari, "Computer Systems Performance Evaluation," Prentice-Hall, Englewood Clifs,
NJ, 1978.

1111 D. Ferrari, "A Study of Load Indices for Load Balancing Schemes," Tech Report, UCB/CSD
86/262, Computer Science Division, University of California, Berkeley, October 1985; also
in: G. Serazzi, Ed., "Workload Characterization of Computer Systems and Computer Net-
works," North-Holland, Amsterdam, 1986.

-28-

[12] A. Hac, and T. J. Johnson, "A Study of Dynamic Load Balancing in a Distributed System",
Proc. ACM SIGCOMM Symposium on Communications, Architectures and Protocols,
Stowe, Vermont, August 1986, pp. 348-356.

113] R. Hagmann, "Process Server: Sharing Processing Power in a Workstation Environment,"
Proc. Principles of Distributed Computing, Cambridge, MA, May 1986.

[14] K. Hwang, W. Croft, G. Goble, B. Wab, F. Briggs, W. Simmons, and C. Coates, "A UNIX-
based Local Computer Network with Load Balancing," IEEE Computer, 15,4, April 1982,
pp. 55-08.

[151 E. Lazowska, J. Zahorjan, D. Cheriton, and W. Zwaenepoel, "File Access Performance of
Diskless Workstations," Tech Report 84-06-01, Dept. of Comp. Sci, Univ. of Washington,
June 1984.

[16] W. Leland and T. Ott, "Load-balancing Heuristics and Process Behavior," ACM SIG-
METRICS Conf., May 1988, pp. 54-69.

[17] M. Livny and M. Melman, "Load Balancing in Homogeneous Broadcast Distributed Sys-
tems," Proc. ACM Computer Network Performance Symposium, April 1982,

[18] H. S. Stone, "Multiprocessor Scheduling with the Aid of of Network Flow Algorithms", IEEE
Trans. Soft. Eng., SE-3,1, January 1977, pp. 85-93.

119] H. S. Stone, "Critical Load Factors in Two Processor Distributed Systems", IEEE Trans.
Soft. Eng., SE-4,3, May 1978, pp. 254-258.

[201 M. Theimer, K. Lantz, and D. Cheriton, "Preemptive Remote Execution Facilities for the
V-System," Tech Report No. STAN-CS-85-1087, Computer Science Dept., Stanford Univ.,
September 1985.

[21] Y. Wang and R Morris, "Load Balancing in Distributed Systems," IEEE Trans. Comp. C-
34,3, March 1985, pp. 204-217.

[221 5. Wu and M. Liu, "Assignment of Tasks and Resources for Distributed Processing," Proc.
COMPCON, Fall 1930, pp. 655-882.

[23] 5. Zhou, "An Experimental Assessment of Resource Queue Length as Load Indices," Tech
Report, UCB/CSD 86/298, Computer Science Division, University of California, Berkeley,
April 1986.

